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Overview

• A style-conditioned locomotion framework with
a compliant gait tracking that enhances safety
and robustness of gait tracking in cluttered
terrains.

• Prevents uncontrolled LLM inference during
deployment to ensure safe and robust
locomotion adaptation through vision and
language.

Conclusion

How can we instruct robot behaviors on-the-fly 
without compromising safety? 

Responding to robot-centric vision

• LLM-constructed database allows us to filter out
potentially dangerous behaviors

• An offline VLM model is able to accurately match
real-time instructions to behaviors in a static
database

Scaling-up skill database
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• LocoVLM adapts the robot’s locomotion either
using direct or vague language instructions.

Real-time language instruction following

• LocoVLM guides the quadruped robot to skulk
like a lynx in a snowy environment, increasing
safety against slippery snow

The proposed method reduces vague and unsafe locomotion gaits typically generated by
online LLM queries

Mixed-precision retrieval
Algorithm 1 Mixed-Precision Retrieval
1: Input: Iquery, D, fBLIP, fITM, K
2: IK  argmaxI2D cossim

�
fBLIP(Iquery), fBLIP(I)

�

3: p1(IK) softmax
�
cossim

�
fBLIP(Iquery), fBLIP(IK)

��

4: for Ik 2 IK do

5: p2(Ik) softmax
�
fITM(Iquery, Ik)

�

6: end for

7: I⇤  argmaxIk

�
p1(IK) + p2(Ik)

�

8: Output: I⇤

is more scalable but less accurate, as it does not leverage the
ITM head’s pre-trained feature fusion [39].

Therefore, we introduce a mixed-precision retrieval
method that combines the best of both schemes. Our mixed-
precision retrieval method breaks down the retrieval process
into two stages. The problem of retrieving an instruction
given a query is formulated as follows:

I⇤ = argmax
I2D

sim
�
Iquery, I

�
, (3)

where Iquery represents the instruction query, I⇤ is the
retrieved instruction, D is the skill database, and sim() is the
similarity metric. A pseudocode summarizing the proposed
mixed-precision retrieval method is provided in Algorithm 1.

2) Text as Image Helps Sentence Understanding: State-
of-the-art VLMs are generally trained on large image-text
datasets using contrastive methods [39]–[41], which align
image-text pairs but ignore relationships between text pairs.
To address this limitation, we hypothesize that representing
text as an image can improve VLM performance. Specif-
ically, we render the text query as a text image, a white
background with foreground text—using a simple plotting
tool like Matplotlib [42]. This image is then fed into the
VLM to perform image-based text retrieval by comparing it
with instruction images in the skill database. This approach
leverages the VLM’s strength in image-text matching to
maximize LocoVLM ’s retrieval performance.

IV. EXPERIMENTS

The primary objective of the proposed LocoVLM frame-
work is to realize a versatile and interactive locomotion
policy grounded in vision-language instructions. To evaluate
its effectiveness, we conducted a series of experiments to
validate our contributions by addressing the following ques-
tions:

1) Robust style-conditioned locomotion. Is the proposed
compliant contact tracking method capable of exe-
cuting various locomotion styles while maintaining
robustness? (Section IV-A)

2) Foundation model knowledge distillation. Is the
LLM-generated database of instructions and their cor-
responding executable motion descriptors effective for
real-time inference and adaptation of the robot’s lo-
comotion policy without requiring the LLM during
deployment? (Section IV-B)

3) Fast and accurate retrieval. Can the proposed re-
trieval method quickly and accurately retrieve the most

TABLE I
PERFORMANCE COMPARISON BETWEEN CONTACT TRACKING WITH AND
WITHOUT COMPLIANCE. THE MEAN AND STANDARD DEVIATION OF THE
TRAVELED DISTANCES FOR 1,000 ROLLOUTS ARE REPORTED FOR EACH
TERRAIN. THE SHADED VALUES INDICATE THE BEST AMONG THE TWO

METHODS.

Gait �
Traveled distance (m) "

Rough Discrete Stairs

Pronk 0 15.13 ± 3.61 17.34 ± 6.41 13.56 ± 2.53

0.5 15.59 ± 3.38 18.42 ± 6.29 14.06 ± 2.74

Trot 0 16.72 ± 3.53 16.62 ± 6.50 14.92 ± 2.82

0.5 16.84 ± 3.72 18.29 ± 6.18 16.34 ± 2.41

Pace 0 17.11 ± 3.51 17.48 ± 5.89 16.83 ± 2.35

0.5 16.31 ± 3.95 19.49 ± 5.77 18.18 ± 2.49

Bound 0 14.57 ± 2.91 14.53 ± 5.64 14.17 ± 2.29

0.5 16.04 ± 3.57 17.43 ± 5.16 15.48 ± 2.92

Rotary
gallop

0 16.67 ± 3.56 16.71 ± 6.20 16.40 ± 2.88

0.5 18.18 ± 3.91 18.61 ± 5.08 18.04 ± 2.10

relevant motion descriptor from the database using a
pre-trained VLM? (Section IV-C)

4) Generalization. How well does the proposed Lo-
coVLM framework generalize across different tasks
and embodiments without further fine-tuning? (Sec-
tion IV-D)

For details on the system setup, please refer to Appendix IV.

A. Gait Tracking Performance

We measured the average traveled distance for different
gaits with and without compliance threshold to assess the
trade-off between accuracy and robustness in the proposed
compliant contact tracking method. Table I summarizes the
results obtained from simulation using 1,000 rollouts. For
each robot, we set a command velocity of 1.2 m/s and a
gait cycle period of 0.4 s. The maximum episode length of
the simulation was set to 20 s.

The traveled distance of the robot consistently increases
when using the compliant tracking method compared with
the baseline (�=0) [24]. This performance gain is attributed
to the compliance introduced in the foot contact tracking,
which allows the robot to adapt to follow the desired gait
pattern, but also comply to violate the gait pattern when nec-
essary to overcome obstacles. The performance improvement
is more pronounced on discrete and stairs terrains, where
the robot is more vulnerable to external disturbances due to
frequent foot collisions with the terrain.

The proposed compliant contact tracking allows our robot
to track foot contact states accurately. A qualitative perfor-
mance evaluation is presented in Fig. 4. The top row displays
the foot contact states, while the bottom row shows snapshots
of the robot for five different gaits. The robot accurately and
robustly tracks the desired foot contact positions for all gaits.

B. Motion Description Data Scaling

We compare the skill database statistics of 300 data points
generated by the LLM in Fig. 5. As a baseline, we generated
motion descriptors using a method similar to SayTap [14],

Fig. 4. Gait tracking performance of the locomotion policy. The top row shows the foot contact states, while the bottom row displays snapshots of the
robot. The robot accurately follows the desired gait patterns for various gaits, namely: (a) pronk, (b) trot, (c) pace, (d) bound, and (e) rotary gallop.

Fig. 5. Statistics of the skill database generated with baseline [14],
LocoVLM without prompted reasoning, and LocoVLM with prompted
reasoning. Each database contains 300 data points and was generated using
the same LLM-generated instructions. The statistics include (a) categorical
gait distribution, (b) histograms of gait cycle period distribution, and
(c) histograms of velocity limit distribution. The histograms are normalized
to have a total probability of 1.

where the LLM is prompted to generate one motion descrip-
tor at each step without any reasoning. We then compare this
baseline with variants of LocoVLM: one without prompted
reasoning and another with prompted reasoning.

The key difference between the baseline and LocoVLM
without prompted reasoning is how the motion descriptors
are generated. LocoVLM queries the VLM to generate
motion descriptors in batches, significantly reducing com-
putational and monetary costs. For instance, the total cost
of generating 300 motion descriptors using the baseline,
LocoVLM without prompted reasoning, and LocoVLM with
prompted reasoning is approximately 1.16, 0.21, and 0.25
USD, respectively, when using the GPT-4o model. Further-
more, this batch generation process provides the LLM with
a form of memory, preventing duplicate motion descriptors
from being generated across queries.

1) Categorical Gait Distribution: As shown in Fig. 5(a),
the baseline database contains many unstructured gait phase

TABLE II
RETRIEVAL ACCURACY OF LOCOVLM USING DIFFERENT RETRIEVAL

METRICS FOR 100 INSTRUCTIONS FROM THE DATABASE.

Retrieval Metric Text as String Text as Image Average

Cosine similarity 21/100 30/100 20.5%
Top-K similarity 27/100 48/100 37.5%
Top-K to ITM 51/100 57/100 54.0%
Mixed-precision 72/100 87/100 79.5%

offsets (marked as others), which may compromise robot
stability. LocoVLM without prompted reasoning reduces
these unstructured gaits by generating motion descriptors
in batches, decreasing repetition and instability. Prompted
reasoning further improves the distribution, reducing unstruc-
tured gaits and promoting a more even spread across the
five standard gaits. This structured understanding is espe-
cially beneficial for vague commands lacking explicit gait
cues, such as “shh! someone is sleeping, move
quietly”.

2) Motion Descriptors Statistics: The histogram in
Fig. 5(b) shows that prompted reasoning leads to a more
balanced distribution of gait cycle periods within 0.2 to
0.7 sec. In contrast, the baseline and LocoVLM without
reasoning cluster around 0.5 sec and include more outliers,
with unstable values up to T = 1.0 sec. As for the velocity
limit (Fig. 5(c)), there is no notable difference across meth-
ods, likely because this parameter is more intuitively inferred
from instructions than the gait period or phase offset.

C. Retrieval Performance
1) Accuracy: To quantitatively evaluate the retrieval per-

formance of the VLM, we manually annotated 100 instruc-
tions and their corresponding motion descriptors based on
our understanding of the instructions due to the lack of
publicly-available groundtruth.

We hypothesize that retrieval performance degrades as
the instruction database scales, which is supported by the
results in Table II. With the text as string input, cosine
similarity correctly retrieved only 21% of the instructions.
The top-K similarity improves this to 27% by narrowing
the retrieval scope to the most similar candidates. Re-ranking
with the BLIP-2 ITM head increases accuracy to 51%, but
the improvement remains marginal.

Our proposed mixed-precision retrieval significantly im-
proves performance, retrieving 72% of the instructions, sug-
gesting greater robustness and accuracy. The improvement is

• LocoVLM employs
BLIP-2 VLM to
perceive the
vision-language
input and retrieve
the closest skill
from the database
with an accuracy
of up to 87%.

Hey robot, please 
cheer me up!

Cheer up -> dancing -> 
dynamically moves all joints -> 
wide angles and fast movement

Online LLM query
1. Unexpected outputs
2. Potentially dangerous motions
3. Slow query

1. Controlled and filtered behaviors
2. Safe and bounded to know behaviors
3. Real-time

LocoVLM


