
Versatile Legged Locomotion Adaptation through Vision-Language
Grounding

I Made Aswin Nahrendra, Seunghyun Lee, Dongkyu Lee, and Hyun Myung∗, Senior Member, IEEE

Vision Language

Model Velocity
command

there are many 

objects nearbyor

Scene description

Direct instruction

walk slowly 

and quitely! or
watch your 

steps!

Mimicking behaviors

you are a happy 

rabbitor

(c) Style-conditioned

locomotion

Scene description

Direct instruction

Mimicking behaviors

Generate 100 

quadrupedal motion 

descriptions

Skillset

database

(a) Motion description data scaling
Vision-language instructions

(b) Mixed-precision retrieval

Proprioception

Motion

description

Executed motions

Large Language

Model

LocoVLM

*a rabbit image generated using GPT-4o for an 

illustrative purpose only

Fig. 1. LocoVLM receives vision-language instructions as its input and hierarchically grounds them into versatile locomotion skills. (a) An LLM is used
to scale up motion descriptor data generation and store it into a skill database. (b) During inference, a VLM retrieves the most relevant motion descriptor
from the database using the proposed mixed-precision retrieval mechanism to give a style reference to the locomotion controller. (c) Finally, a pre-trained
style-conditioned locomotion controller executes the robot’s motion to realize the given vision-language instructions.

Abstract— Recent advances in legged locomotion learning are
still dominated by the utilization of geometric representations
of the environment, limiting the robot’s capability to respond to
higher-level semantics such as human instructions. To address
this limitation, we propose a novel approach that integrates
high-level commonsense reasoning from foundation models
into the process of legged locomotion adaptation. Specifically,
our method utilizes a pre-trained large language model to
synthesize an instruction-grounded skill database tailored for
legged robots. A pre-trained vision-language model is employed
to extract high-level environmental semantics and ground them
within the skill database, enabling real-time skill advisories for
the robot. To facilitate versatile skill control, we train a style-
conditioned policy capable of generating diverse and robust
locomotion skills with high fidelity to specified styles. To the best
of our knowledge, this is the first work to demonstrate real-time
adaptation of legged locomotion using high-level reasoning from
environmental semantics and instructions with instruction-
following accuracy of up to 87% without the need for online
query to on-the-cloud foundation models. Demonstration videos
are available at https://locovlm.github.io.

This work was supported by the Korea Evaluation Institute of Industrial
Technology (KEIT) funded by the Korea Government (MOTIE) under grant
No. 20019216, “Development of Mobile Intelligence SW for Autonomous
Navigation of Legged Robots in Dynamic and Atypical Environments for
Real Application.” The students are supported by BK21 FOUR.

The authors are with the School of Electrical Engineering, Korea Ad-
vanced Institute of Science and Technology (KAIST), Daejeon 34141,
Republic of Korea (e-mail: {anahrendra, kevin9709, dklee98,
hmyung}@kaist.ac.kr).
∗Corresponding author: Hyun Myung.

I. INTRODUCTION

Legged robots hold immense potential for real-world ap-
plications owing to their ability to navigate complex terrains
and environments. Over the past decade, they have become
increasingly developed for their potential to assist humans
in various tasks such as inspection, last-mile delivery, and
search-and-rescue missions [1]–[3]. Recent advancements in
deep reinforcement learning (RL) have significantly acceler-
ated research in this domain. RL, in particular, has shown
promising results in generating robust locomotion policies
capable of adapting to diverse terrains and tasks [4]–[9]. A
critical challenge in legged locomotion lies in perceiving the
environment and acting accordingly while fully utilizing the
robot’s physical capabilities.

Typically, legged robot locomotion is governed by con-
trollers that rely on geometric representations of the envi-
ronment. These representations are derived either explicitly
from exteroceptive sensors or implicitly from proprioceptive
sensors [10]–[13]. However, geometric representations fail to
capture environmental semantics, such as object affordances,
social awareness, or task-specific details. Understanding en-
vironmental semantics is essential for robots to synthesize
interactive and skillful behaviors, which are crucial for
executing more complex high-level tasks [14]–[17].

Recent advancements in foundation models, such as
large language models (LLMs) and vision-language mod-

https://locovlm.github.io


els (VLMs), have created opportunities to integrate higher-
level reasoning with low-level robot control by using vision-
language observations [18]–[20]. However, the advantages of
modern foundation models are often hindered by challenges
in integrating these large models with control policies that
require real-time decision-making [21], [22].

We propose LocoVLM, a novel framework for legged lo-
comotion that brings the vast knowledge of foundation mod-
els into the field of legged locomotion. LocoVLM grounds
image and language inputs to adapt versatile locomotion
policies in real time, yielding a robust and interactive legged
locomotion system.

Fig. 1 provides an overview of our proposed LocoVLM
framework, which can be viewed as a hierarchical system fol-
lowing a teacher-student paradigm for the high-level policy.
The LLM functions as a high-level teacher policy, generating
high-level commands for the robot, while the VLM serves as
a high-level student policy that extracts a subset of domain
knowledge from the teacher policy. The low-level policy is
the style-conditioned locomotion controller that executes the
given motions based on the high-level commands.

In summary, the contributions of this paper aim to address
the following key challenges in integrating vision-language
models with legged robot locomotion:

1) Robust style-conditioned locomotion. A locomotion
policy learning framework that efficiently conditions
locomotion styles while maintaining robustness, en-
abling the robot to accurately follow semantic instruc-
tions without compromising stability.

2) Foundation model knowledge distillation. A scalable
data generation pipeline that utilizes an LLM to gener-
ate a database of instructions and their corresponding
executable motion descriptor, allowing real-time infer-
ence and adaptation of the robot’s locomotion policy
without requiring in-the-loop queries to an LLM.

3) Fast and accurate retrieval. A vision-language
grounding approach that facilitates real-time retrieval
of motion descriptor from the database using a pre-
trained VLM, enabling the robot to adapt its loco-
motion policy based on human instructions or robot-
centric observations.

4) Generalization. An analysis of the framework’s gener-
alization capabilities across different tasks and embodi-
ments, highlighting its potential for further applications
in real-world scenarios.

II. RELATED WORK

A. Locomotion Skill Control

Recent advancements in learning methods for legged lo-
comotion have enabled robust and skillful control, signif-
icantly improving the robot’s adaptability and versatility.
The learning of these locomotion skills is generally guided
by reference commands in the form of base velocity [4],
[5], [8], [10], foot trajectory [23], or body pose [9], [11].
Recent works in learning-based locomotion control have also
nurtured the learning of controllable skills using heuristics

defined in the reward functions. These heuristic rewards
have facilitated the learning of gait style-conditioned [24]–
[27] or contact-scheduled [14], [28] policies. However, these
heuristic reward functions often undermines the controller’s
robustness, as the reward design may tend to satisfy the
heuristics rather than maintaining robustness against distur-
bances.

B. LLM as Robot Policies

The success of LLMs in reasoning and generating human-
like text has sparked interest in using them as robot policies.
A common approach runs the LLM in the control loop
to generate executable actions, such as code [29], sub-task
plans [15], [30], rewards [31], or high-level commands [14],
[21], [32]. However, deploying LLMs for real-time control
remains challenging, especially in field deployments, where a
dedicated cloud connectivity is often unavailable. As a result,
most deployments are constrained to controlled environments
with dedicated networks [14], [15], [17], or must trade off
smooth real-time performance [21], [33].

C. LLM as a Data Generator

Another paradigm for utilizing LLMs is to employ them
as data generators. The motivation behind this approach is: if
LLMs can generate human-like texts, can they also annotate
or code like humans? This idea has been recently explored
to scale up data generation for training robot policies with
minimal human effort in data collection [34], [35] and to
accelerate code composition for training environment gen-
eration [36]–[38]. Leveraging LLMs as data generators can
rapidly scale up data for various tasks, reducing the manual
effort required for data annotation.

III. METHODOLOGY

A. Versatile Quadrupedal Locomotion

1) Style-Conditioned Locomotion Policy: We trained a
style-conditioned locomotion policy using a blind velocity-
conditioned locomotion learning framework [4], [5], [7],
[8], [24], augmented with a style parameter vector that
parameterizes gait style using a gait cycle duration T and
gait phase offsets ψ ∈ R4. A gait phase encoding vector
was used as a clock input for the policy, defined as φ(t) =
[sin

(
2π t

T

)
, cos

(
2π t

T

)
], where t denote the current time

step.
2) Compliant Contact Tracking: Style-conditioned con-

tact tracking often compromises locomotion robustness to
enhance style accuracy. Therefore, we propose a compliant
contact tracking method that allows accurate gait tracking
while preserving the robustness of the locomotion controller.
This behavior is achieved by incorporating a compliance term
into the contact tracking reward function, which imposes zero
penalty when the foot is not in the correct contact state within
the compliance threshold. The compliance term is defined as:

φcomply
error =

{
0, if φerror ≤ δ,
φerror, otherwise,

(1)



!t

Swing Stance

C
o
m

p
li

an
ce

 z
o
n
e

Fig. 2. Gait phase encoding for a cycle duration of T =1. The gait phase
encoding vector is a two-dimensional representation of the current phase in
the gait cycle.

where δ is the compliance threshold, and φerror represents
the error between the desired and actual contact states. The
desired contact states for the swing and stance phases are
zero and one, respectively. Fig. 2 illustrates the gait phase
encoding for T = 1 with δ = 0.5. Within the compliance
zone (green shade), the policy is not rewarded for tracking
the cycle phase (orange curves), allowing it to compliantly
adapt to disturbances.

B. Scaling Up Motion Description Data

We utilize an LLM to generate a database of instructions
and motion descriptors for the robot’s locomotion policy. By
creating a database of instructions and their corresponding
motion descriptors, we distill the commonsense knowledge
of the LLM into a structured instruction set tailored for the
robot’s locomotion policy.

1) Instruction Description Generation: We propose a
two-stage data generation pipeline to efficiently scale up
the data generation process. In the first stage of the data
generation process, we prompt the LLM to generate a
set of brief instructions and/or scene descriptions I. These
instructions are categorized into three types: (1) mimicking
behaviors, (2) responding to a scene, and (3) following
direct instructions. More details regarding the instruction
generation and the system prompts used in this paper is
supplemented Appendices I and II, respectively.

2) Instruction-Grounded Motion Description: The LLM-
generated instructions and motion descriptors are stored in
a skill database D. During deployment, a pre-trained VLM
encodes the input instruction, provided as text or an image,
into an embedding space. The closest instruction embedding
in the database is then retrieved to obtain the corresponding
motion descriptor, as illustrated in Fig. 3.

Each entry in the database is a tuple d = (I,M), where
I ∈ I is the instruction text and M is the motion descriptor.
The motion descriptor is defined as follows:

M =

 T
ψ
vlimit
x

 , (2)

where ψ is the gait phase offsets and vlimit
x is the maximum

velocity along the x-axis. Without loss of generality, we use
only the velocity limit along the x-axis in the motion descrip-
tor. However, extending the descriptor to include velocity

Skill database

you are 

a kangaroo!

show me how 

a rabbit jumps

let's hop like a rabbit

run & catch that mouse!

run beautifully like a horse

shh! someone is 

sleeping, move quitely

Embedding space

there's an icy patch! go carefully!

Reasoning

Motion descriptor

Reasoning

Motion descriptor

Reasoning

Motion descriptor

*a rabbit image generated using GPT-4o 

for an illustrative purpose only

Fig. 3. Skill database retrieval process. The instruction query is encoded
by a VLM into a learned embedding space. A VLM is used instead of a
sentence encoder to enable multimodal retrieval from text or image inputs.
The closest instruction embedding in the database is retrieved to obtain the
corresponding motion descriptor.

limits along the y-axis and the yaw rate is straightforward
and could benefit the generation of more diverse motions. In
this paper, we limit the motion descriptor to three elements,
representing the minimum parameters required to synthesize
various locomotion styles.

3) Prompted Reasoning for Motion Description Genera-
tion: Generating low-level motion descriptions from direct
instructions (e.g., “walk forward”) is relatively straight-
forward, as these can be directly mapped to parameters such
as gait type, gait cycle period, and velocity limit. How-
ever, vague instructions (e.g., “move like a hippo”) or
contextual cues (e.g., “you are in a library”) pose
greater challenges.

To circumvent this issue, we introduce a prompted rea-
soning method that guides the LLM in generating diverse,
executable skills. The key idea is to translate high-level
instructions into detailed and technical descriptions. This
is achieved by prepending a system prompt that asks the
LLM to first produce reasoning before outputting a motion
description. As shown in Fig. 3, each skill entry consists
of an instruction, its reasoning, and the resulting motion
descriptor. A complete listings of the system prompt for
the skill generation with prompted reasoning is provided in
Appendix III.

C. Vision-Language Model as a Motion Advisor

1) Mixed-Precision Retrieval: During deployment, Lo-
coVLM retrieves the most similar instruction from the skill
database and forwards it to the locomotion policy. We
used the encoder of a pre-trained BLIP-2 model [39] to
extract embeddings from both text and image queries. These
embeddings are then compared with the instructions in the
database to identify the closest match.

A key challenge in database scaling is retrieval ef-
ficiency. Accurate retrieval using BLIP-2’s image-text-
matching (ITM) head requires exhaustively comparing the
query against all database entries. In contrast, computing
cosine similarity between query and instruction embeddings



Algorithm 1 Mixed-Precision Retrieval
1: Input: Iquery, D, fBLIP, fITM, K
2: IK ← argmaxI∈D cossim

(
fBLIP(Iquery), fBLIP(I)

)
3: p1(I

K)← softmax
(
cossim

(
fBLIP(Iquery), fBLIP(IK)

))
4: for Ik ∈ IK do
5: p2(Ik)← softmax

(
fITM(Iquery, Ik)

)
6: end for
7: I∗ ← argmaxIk

(
p1(I

K) + p2(I
k)
)

8: Output: I∗

is more scalable but less accurate, as it does not leverage the
ITM head’s pre-trained feature fusion [39].

Therefore, we introduce a mixed-precision retrieval
method that combines the best of both schemes. Our mixed-
precision retrieval method breaks down the retrieval process
into two stages. The problem of retrieving an instruction
given a query is formulated as follows:

I∗ = argmax
I∈D

sim
(
Iquery, I

)
, (3)

where Iquery represents the instruction query, I∗ is the
retrieved instruction, D is the skill database, and sim() is the
similarity metric. A pseudocode summarizing the proposed
mixed-precision retrieval method is provided in Algorithm 1.

2) Text as Image Helps Sentence Understanding: State-
of-the-art VLMs are generally trained on large image-text
datasets using contrastive methods [39]–[41], which align
image-text pairs but ignore relationships between text pairs.
To address this limitation, we hypothesize that representing
text as an image can improve VLM performance. Specif-
ically, we render the text query as a text image, a white
background with foreground text—using a simple plotting
tool like Matplotlib [42]. This image is then fed into the
VLM to perform image-based text retrieval by comparing it
with instruction images in the skill database. This approach
leverages the VLM’s strength in image-text matching to
maximize LocoVLM ’s retrieval performance.

IV. EXPERIMENTS

The primary objective of the proposed LocoVLM frame-
work is to realize a versatile and interactive locomotion
policy grounded in vision-language instructions. To evaluate
its effectiveness, we conducted a series of experiments to
validate our contributions by addressing the following ques-
tions:

1) Robust style-conditioned locomotion. Is the proposed
compliant contact tracking method capable of exe-
cuting various locomotion styles while maintaining
robustness? (Section IV-A)

2) Foundation model knowledge distillation. Is the
LLM-generated database of instructions and their cor-
responding executable motion descriptors effective for
real-time inference and adaptation of the robot’s lo-
comotion policy without requiring the LLM during
deployment? (Section IV-B)

3) Fast and accurate retrieval. Can the proposed re-
trieval method quickly and accurately retrieve the most

TABLE I
PERFORMANCE COMPARISON BETWEEN CONTACT TRACKING WITH AND
WITHOUT COMPLIANCE. THE MEAN AND STANDARD DEVIATION OF THE
TRAVELED DISTANCES FOR 1,000 ROLLOUTS ARE REPORTED FOR EACH
TERRAIN. THE SHADED VALUES INDICATE THE BEST AMONG THE TWO

METHODS.

Gait δ
Traveled distance (m) ↑

Rough Discrete Stairs

Pronk 0 15.13± 3.61 17.34± 6.41 13.56± 2.53

0.5 15.59± 3.38 18.42± 6.29 14.06± 2.74

Trot 0 16.72± 3.53 16.62± 6.50 14.92± 2.82

0.5 16.84± 3.72 18.29± 6.18 16.34± 2.41

Pace 0 17.11± 3.51 17.48± 5.89 16.83± 2.35

0.5 16.31± 3.95 19.49± 5.77 18.18± 2.49

Bound 0 14.57± 2.91 14.53± 5.64 14.17± 2.29

0.5 16.04± 3.57 17.43± 5.16 15.48± 2.92

Rotary
gallop

0 16.67± 3.56 16.71± 6.20 16.40± 2.88

0.5 18.18± 3.91 18.61± 5.08 18.04± 2.10

relevant motion descriptor from the database using a
pre-trained VLM? (Section IV-C)

4) Generalization. How well does the proposed Lo-
coVLM framework generalize across different tasks
and embodiments without further fine-tuning? (Sec-
tion IV-D)

For details on the system setup, please refer to Appendix IV.

A. Gait Tracking Performance

We measured the average traveled distance for different
gaits with and without compliance threshold to assess the
trade-off between accuracy and robustness in the proposed
compliant contact tracking method. Table I summarizes the
results obtained from simulation using 1,000 rollouts. For
each robot, we set a command velocity of 1.2 m/s and a
gait cycle period of 0.4 s. The maximum episode length of
the simulation was set to 20 s.

The traveled distance of the robot consistently increases
when using the compliant tracking method compared with
the baseline (δ=0) [24]. This performance gain is attributed
to the compliance introduced in the foot contact tracking,
which allows the robot to adapt to follow the desired gait
pattern, but also comply to violate the gait pattern when nec-
essary to overcome obstacles. The performance improvement
is more pronounced on discrete and stairs terrains, where
the robot is more vulnerable to external disturbances due to
frequent foot collisions with the terrain.

The proposed compliant contact tracking allows our robot
to track foot contact states accurately. A qualitative perfor-
mance evaluation is presented in Fig. 4. The top row displays
the foot contact states, while the bottom row shows snapshots
of the robot for five different gaits. The robot accurately and
robustly tracks the desired foot contact positions for all gaits.

B. Motion Description Data Scaling

We compare the skill database statistics of 300 data points
generated by the LLM in Fig. 5. As a baseline, we generated
motion descriptors using a method similar to SayTap [14],



(a) (b) (c) (d) (e)

S
n
ap
sh
o
ts

Fig. 4. Gait tracking performance of the locomotion policy. The top row shows the foot contact states, while the bottom row displays snapshots of the
robot. The robot accurately follows the desired gait patterns for various gaits, namely: (a) pronk, (b) trot, (c) pace, (d) bound, and (e) rotary gallop.

(a)

LocoVLM 

without prompted reasoning

LocoVLM 

with prompted reasoning
Baseline

(b)

(c)

Fig. 5. Statistics of the skill database generated with baseline [14],
LocoVLM without prompted reasoning, and LocoVLM with prompted
reasoning. Each database contains 300 data points and was generated using
the same LLM-generated instructions. The statistics include (a) categorical
gait distribution, (b) histograms of gait cycle period distribution, and
(c) histograms of velocity limit distribution. The histograms are normalized
to have a total probability of 1.

where the LLM is prompted to generate one motion descrip-
tor at each step without any reasoning. We then compare this
baseline with variants of LocoVLM: one without prompted
reasoning and another with prompted reasoning.

The key difference between the baseline and LocoVLM
without prompted reasoning is how the motion descriptors
are generated. LocoVLM queries the VLM to generate
motion descriptors in batches, significantly reducing com-
putational and monetary costs. For instance, the total cost
of generating 300 motion descriptors using the baseline,
LocoVLM without prompted reasoning, and LocoVLM with
prompted reasoning is approximately 1.16, 0.21, and 0.25
USD, respectively, when using the GPT-4o model. Further-
more, this batch generation process provides the LLM with
a form of memory, preventing duplicate motion descriptors
from being generated across queries.

1) Categorical Gait Distribution: As shown in Fig. 5(a),
the baseline database contains many unstructured gait phase

TABLE II
RETRIEVAL ACCURACY OF LOCOVLM USING DIFFERENT RETRIEVAL

METRICS FOR 100 INSTRUCTIONS FROM THE DATABASE.

Retrieval Metric Text as String Text as Image Average
Cosine similarity 21/100 30/100 20.5%
Top-K similarity 27/100 48/100 37.5%
Top-K to ITM 51/100 57/100 54.0%
Mixed-precision 72/100 87/100 79.5%

offsets (marked as others), which may compromise robot
stability. LocoVLM without prompted reasoning reduces
these unstructured gaits by generating motion descriptors
in batches, decreasing repetition and instability. Prompted
reasoning further improves the distribution, reducing unstruc-
tured gaits and promoting a more even spread across the
five standard gaits. This structured understanding is espe-
cially beneficial for vague commands lacking explicit gait
cues, such as “shh! someone is sleeping, move
quietly”.

2) Motion Descriptors Statistics: The histogram in
Fig. 5(b) shows that prompted reasoning leads to a more
balanced distribution of gait cycle periods within 0.2 to
0.7 sec. In contrast, the baseline and LocoVLM without
reasoning cluster around 0.5 sec and include more outliers,
with unstable values up to T = 1.0 sec. As for the velocity
limit (Fig. 5(c)), there is no notable difference across meth-
ods, likely because this parameter is more intuitively inferred
from instructions than the gait period or phase offset.

C. Retrieval Performance

1) Accuracy: To quantitatively evaluate the retrieval per-
formance of the VLM, we manually annotated 100 instruc-
tions and their corresponding motion descriptors based on
our understanding of the instructions due to the lack of
publicly-available groundtruth.

We hypothesize that retrieval performance degrades as
the instruction database scales, which is supported by the
results in Table II. With the text as string input, cosine
similarity correctly retrieved only 21% of the instructions.
The top-K similarity improves this to 27% by narrowing
the retrieval scope to the most similar candidates. Re-ranking
with the BLIP-2 ITM head increases accuracy to 51%, but
the improvement remains marginal.

Our proposed mixed-precision retrieval significantly im-
proves performance, retrieving 72% of the instructions, sug-
gesting greater robustness and accuracy. The improvement is



Im
ag

e 
q

u
er

ie
s

R
et

ri
ev

ed

m
o

ti
o

n
 d

es
cr

ip
ti

o
n

s

  
instruction: 
"traipse lightly like a 
deer"

gait_phase_offsets: 
[0.0, 0.5, 0.5, 0.0]

T: 0.5
vel_lim: 0.6 

    
instruction: 
"a field of ice, walk 
light-footed"

gait_phase_offsets: 
[0.0, 0.5, 0.5, 0.0]

T: 0.6
vel_lim: 0.3

    
instruction 
"skulk with stealth like a 
lynx"

gait_phase_offsets: 
[0.0, 0.5, 0.5, 0.0]

T: 0.7
vel_lim: 0.2

 

Fig. 6. LocoVLM succesfully interprets the scenes in the form of RGB
images and provides the robot with motion descriptors that are suitable for
the observed scenes.

attributed to combining two levels of similarity: top-K sim-
ilarity captures low-level textual cues, while the ITM metric
captures higher-level semantics. Their combination enables
more accurate retrieval than either metric alone. Additionally,
incorporating text-as-image representation further improves
the accuracy up to 87%.

2) Interpretation of Queries Out of the Database.: One
important feature of LocoVLM is its ability to interpret
instructions outside of the database. This enables users
to interact with the robot more naturally and intuitively,
without being constrained by the queries in the database.
For instance, the VLM interprets the query “you are a
kangaroo” as “let’s jump like a rabbit”, even
though the query is absent from the database. Similarly,
it responds to the query “this is a library!” by
suggesting “move quietly”, which aligns with common
behavior in a library. These results highlight that the semantic
reasoning capabilities of the VLM are sufficient to retrieve
feasible motion commands, even for out-of-database queries.

3) Interpretation of Robot-Centric Image Queries.: We
evaluated LocoVLM’s performance on image-based queries
captured by the robot’s onboard camera without additional
processing as. The experiment took place outdoors in a cam-
pus environment, where the robot transitioned from pavement
to snow-covered terrain as shown in Fig. 6.

On the pavement, LocoVLM interpreted the scene as
“traipse lightly like a deer”, prompting a trot
with a moderate velocity limit of 0.6 m/s. In snowy areas, it
produced interpretations like “a field of ice, walk
light-footed” or “skulk with stealth like a
lynx”, resulting in slower gaits with lower velocity limits
(0.2-0.3 m/s) and longer gait cycle periods (0.6-0.7 s). The
lynx analogy is especially notable given the lynx’s natural
habitat in cold, snowy environments.

These results demonstrate LocoVLM’s ability to process
robot-centric image queries and generate context-aware lo-
comotion commands. This is particularly useful when envi-
ronments are visually distinct but geometrically similar, as
in our pavement-to-snow scenario.

D. Zero-Shot Generalization Across Embodiments

We demonstrate the feasibility of utilizing LocoVLM to
generalize across different legged robot embodiment, specif-

ically on a humanoid robot. We trained a style-conditioned
locomotion policy for a Unitree H1 robot with minimum
modifications, i.e., by changing the gait phase offsets only
for two legs. Therefore, the policy is trained only on the
trot and pronk gaits.

We directly utilized the skill database generated for
quadrupedal robots by using only the first two gait offsets
for each instruction. Due to resource limitations, we ex-
perimented only in a MuJoCo simulation environment [43],
[44]. The results in Fig. 7 show successful skill retrieval and
execution on the humanoid robot. This experiment demon-
strates the generalizability of LocoVLM that is attributed to
the generalized motion parameterization and the instruction-
grounded skill database.

V. CONCLUSION

In this paper, we presented LocoVLM, a novel hierar-
chical locomotion adaptation framework that leverages pre-
trained foundation models as a high-level motion advisor
for a versatile style-conditioned locomotion policy. Unlike
recent works that utilize LLMs for in-the-loop control, Lo-
coVLM does not require in-the-loop LLM access, thereby
enabling deployment in real-time systems without the need
for continuous connectivity to the LLM. Specifically, we
proposed a two-stage data generation process to efficiently
scale up data generation and distill the knowledge from
the LLM into an efficient offline VLM. Our framework
was validated through extensive experiments, demonstrating
its skill expressiveness and generalizability across different
legged robot embodiments and tasks.

REFERENCES

[1] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma,
T. Pailevanian, S.-K. Kim, K. Otsu, J. Burdick et al., “Autonomous
Spot: Long-range autonomous exploration of extreme environments
with legged locomotion,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot.
Syst., 2020, pp. 2518–2525.

[2] J. Lee, M. Bjelonic, A. Reske, L. Wellhausen, T. Miki, and M. Hutter,
“Learning robust autonomous navigation and locomotion for wheeled-
legged robots,” Sci. Robot., vol. 9, no. 89, p. eadi9641, 2024.

[3] A. Jacoff, J. Jeon, O. Huke, D. Kanoulas, S. Ha, D. Kim, and H. Moon,
“Taking the First Step Toward Autonomous Quadruped Robots: The
quadruped robot challenge at ICRA 2023 in London [Competitions],”
IEEE Robot. Autom. Mag., vol. 30, no. 3, pp. 154–158, 2023.

[4] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: Rapid motor
adaptation for legged robots,” in Robot. Sci. Syst., 2021.

[5] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learn-
ing quadrupedal locomotion over challenging terrain,” Sci. Robot.,
vol. 5, no. 47, p. eabc5986, 2020.

[6] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Proc. PMLR Conf. Robot. Learn., 2022, pp. 91–100.

[7] G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concurrent training of a
control policy and a state estimator for dynamic and robust legged
locomotion,” IEEE Robot. Automat. Lett., vol. 7, no. 2, pp. 4630–
4637, 2022.

[8] I. M. A. Nahrendra, B. Yu, and H. Myung, “DreamWaQ: Learning
robust quadrupedal locomotion with implicit terrain imagination via
deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Au-
tomat., 2023.

[9] N. Rudin, D. Hoeller, M. Bjelonic, and M. Hutter, “Advanced skills
by learning locomotion and local navigation end-to-end,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2022, pp. 2497–2503.

[10] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Sci. Robot., vol. 7, no. 62, p. eabk2822, 2022.

https://ieeexplore.ieee.org/abstract/document/9341361/
https://ieeexplore.ieee.org/abstract/document/9341361/
https://ieeexplore.ieee.org/abstract/document/9341361/
https://www.science.org/doi/10.1126/scirobotics.adi9641
https://www.science.org/doi/10.1126/scirobotics.adi9641
https://ieeexplore.ieee.org/document/10255505
https://ieeexplore.ieee.org/document/10255505
https://arxiv.org/abs/2107.04034
https://arxiv.org/abs/2107.04034
https://www.science.org/doi/10.1126/scirobotics.abc5986
https://www.science.org/doi/10.1126/scirobotics.abc5986
https://openreview.net/forum?id=wK2fDDJ5VcF
https://openreview.net/forum?id=wK2fDDJ5VcF
https://ieeexplore.ieee.org/document/9714001
https://ieeexplore.ieee.org/document/9714001
https://ieeexplore.ieee.org/document/9714001
https://ieeexplore.ieee.org/document/10161144
https://ieeexplore.ieee.org/document/10161144
https://ieeexplore.ieee.org/document/10161144
https://ieeexplore.ieee.org/document/9981198
https://ieeexplore.ieee.org/document/9981198
https://www.science.org/doi/10.1126/scirobotics.abk2822
https://www.science.org/doi/10.1126/scirobotics.abk2822


(a) (c)(b)

go quickly! shh! the baby is sleeping you are a kangaroo

Snapshot

Query

Fig. 7. Although LocoVLM is configured for a quadrupedal robot, it can generalize to a humanoid robot in a zero-shot manner by utilizing only a subset
of the gait phase offsets. The humanoid robot successfully adapts its locomotion style to follow the given text query.

[11] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “ANYmal parkour:
Learning agile navigation for quadrupedal robots,” Sci. Robot., vol. 9,
no. 88, p. eadi7566, 2024.

[12] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” in Proc. IEEE Int. Conf. Robot. Automat., 2024, pp.
11 443–11 450.

[13] I. M. A. Nahrendra, B. Yu, M. Oh, D. Lee, S. Lee, H. Lee,
H. Lim, and H. Myung, “Obstacle-aware quadrupedal locomotion
with resilient multi-modal reinforcement learning,” arXiv preprint
arXiv:2409.19709, 2024.

[14] Y. Tang, W. Yu, J. Tan, H. Zen, A. Faust, and T. Harada, “SayTap:
Language to quadrupedal locomotion,” in Proc. PMLR Conf. Robot.
Learn.. PMLR, 2023, pp. 3556–3570.

[15] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suen-
derhauf, “SayPlan: Grounding large language models using 3D scene
graphs for scalable robot task planning,” in Proc. PMLR Conf. Robot.
Learn., 2023, pp. 23–72.

[16] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho,
J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H.
Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao,
K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and
A. Zeng, “Do As I Can and Not As I Say: Grounding language in
robotic affordances,” in Proc. PMLR Conf. Robot. Learn., 2022.

[17] M. F. Ginting, D.-K. Kim, S.-K. Kim, B. J. Krishna, M. J. Kochen-
derfer, S. Omidshafiei, and A.-a. Agha-mohammadi, “SayComply:
Grounding field robotic tasks in operational compliance through
retrieval-based language models,” arXiv preprint arXiv:2411.11323,
2024.

[18] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “RT-1:
Robotics transformer for real-world control at scale,” Robot. Sci. Syst.,
2023.

[19] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “RT-2: Vision-
language-action models transfer web knowledge to robotic control,”
in Proc. PMLR Conf. Robot. Learn., 2023, pp. 2165–2183.

[20] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson,
Y. Chebotar, D. Dwibedi, and D. Sadigh, “RT-H: Action hierarchies
using language,” Robot. Sci. Syst., 2024.

[21] S. Mirchandani, F. Xia, P. Florence, B. Ichter, D. Driess, M. G. Arenas,
K. Rao, D. Sadigh, and A. Zeng, “Large language models as general
pattern machines,” in Proc. PMLR Conf. Robot. Learn., 2023, pp.
2498–2518.

[22] Y. Kim, D. Kim, J. Choi, J. Park, N. Oh, and D. Park, “A survey
on integration of large language models with intelligent robots,”
Intelligent Service Robotics, vol. 17, no. 5, pp. 1091–1107, 2024.

[23] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “DeepGait:
Planning and control of quadrupedal gaits using deep reinforcement

learning,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3699–3706,
2020.

[24] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot
control for generalization with multiplicity of behavior,” in Proc.
PMLR Conf. Robot. Learn., 2023, pp. 22–31.

[25] G. Kim, Y.-H. Lee, and H.-W. Park, “A learning framework for diverse
legged robot locomotion using barrier-based style rewards,” arXiv
preprint arXiv:2409.15780, 2024.

[26] G. Bellegarda, M. Shafiee, and A. Ijspeert, “AllGaits: Learning all
quadruped gaits and transitions,” arXiv preprint arXiv:2411.04787,
2024.

[27] J. Humphreys and C. Zhou, “Learning to Adapt: Bio-inspired
gait strategies for versatile quadruped locomotion,” arXiv preprint
arXiv:2412.09440, 2024.

[28] C. Zhang, W. Xiao, T. He, and G. Shi, “WoCoCo: Learning whole-
body humanoid control with sequential contacts,” in Proc. PMLR Conf.
Robot. Learn., 2024.

[29] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” in Proc. IEEE Int. Conf. Robot. Automat., 2023,
pp. 9493–9500.

[30] Z. Mandi, S. Jain, and S. Song, “RoCo: Dialectic multi-robot collab-
oration with large language models,” in Proc. IEEE Int. Conf. Robot.
Automat., 2024, pp. 286–299.

[31] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik et al., “Language
to rewards for robotic skill synthesis,” in Proc. PMLR Conf. Robot.
Learn., 2023, pp. 374–404.

[32] A. Jiao, T. P. Patel, S. Khurana, A.-M. Korol, L. Brunke, V. K.
Adajania, U. Culha, S. Zhou, and A. P. Schoellig, “Swarm-GPT:
Combining large language models with safe motion planning for robot
choreography design,” arXiv preprint arXiv:2312.01059, 2023.

[33] A.-C. Cheng, Y. Ji, Z. Yang, X. Zou, J. Kautz, E. Bıyık, H. Yin, S. Liu,
and X. Wang, “NaVILA: Legged robot vision-language-action model
for navigation,” arXiv preprint arXiv:2412.04453, 2024.

[34] H. Ha, P. Florence, and S. Song, “Scaling up and distilling down:
Language-guided robot skill acquisition,” in Proc. PMLR Conf. Robot.
Learn., 2023, pp. 3766–3777.

[35] A. Yu, G. Yang, R. Choi, Y. Ravan, J. Leonard, and P. Isola, “Learning
visual parkour from generated images,” in Proc. PMLR Conf. Robot.
Learn., 2024.

[36] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman,
Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-level reward
design via coding large language models,” in Proc. Int. Conf. Learn.
Represent., 2024.

[37] Y. J. Ma, W. Liang, H. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani,
and D. Jayaraman, “DrEureka: Language model guided sim-to-real
transfer,” in Robot. Sci. Syst., 2024.

[38] W. Liang, S. Wang, H.-J. Wang, O. Bastani, D. Jayaraman, and Y. J.
Ma, “Environment curriculum generation via large language models,”
in Proc. PMLR Conf. Robot. Learn., 2024.

https://www.science.org/doi/10.1126/scirobotics.adi7566
https://www.science.org/doi/10.1126/scirobotics.adi7566
https://ieeexplore.ieee.org/document/10610200
https://ieeexplore.ieee.org/document/10610200
https://arxiv.org/abs/2409.19709
https://arxiv.org/abs/2409.19709
https://arxiv.org/abs/2306.07580
https://arxiv.org/abs/2306.07580
https://proceedings.mlr.press/v229/rana23a.html
https://proceedings.mlr.press/v229/rana23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://saycomply.github.io/
https://saycomply.github.io/
https://saycomply.github.io/
https://www.roboticsproceedings.org/rss19/p025.pdf
https://www.roboticsproceedings.org/rss19/p025.pdf
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2307.15818
https://rt-hierarchy.github.io/
https://rt-hierarchy.github.io/
https://arxiv.org/abs/2307.04721
https://arxiv.org/abs/2307.04721
https://link.springer.com/article/10.1007/s11370-024-00550-5
https://link.springer.com/article/10.1007/s11370-024-00550-5
https://ieeexplore.ieee.org/document/9028188
https://ieeexplore.ieee.org/document/9028188
https://ieeexplore.ieee.org/document/9028188
https://proceedings.mlr.press/v205/margolis23a.html
https://proceedings.mlr.press/v205/margolis23a.html
https://arxiv.org/abs/2409.15780
https://arxiv.org/abs/2409.15780
https://arxiv.org/abs/2411.04787
https://arxiv.org/abs/2411.04787
https://arxiv.org/abs/2412.09440
https://arxiv.org/abs/2412.09440
https://arxiv.org/abs/2406.06005
https://arxiv.org/abs/2406.06005
https://ieeexplore.ieee.org/abstract/document/10160591
https://ieeexplore.ieee.org/abstract/document/10160591
https://ieeexplore.ieee.org/document/10610855
https://ieeexplore.ieee.org/document/10610855
https://proceedings.mlr.press/v229/yu23a/yu23a.pdf
https://proceedings.mlr.press/v229/yu23a/yu23a.pdf
https://arxiv.org/abs/2312.01059
https://arxiv.org/abs/2312.01059
https://arxiv.org/abs/2312.01059
https://arxiv.org/abs/2412.04453
https://arxiv.org/abs/2412.04453
https://arxiv.org/abs/2307.14535
https://arxiv.org/abs/2307.14535
https://arxiv.org/abs/2411.00083
https://arxiv.org/abs/2411.00083
https://arxiv.org/abs/2310.12931
https://arxiv.org/abs/2310.12931
https://arxiv.org/abs/2406.01967
https://arxiv.org/abs/2406.01967
https://openreview.net/forum?id=F0rWEID2gb


[39] J. Li, D. Li, S. Savarese, and S. Hoi, “BLIP-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” in Proc. PMLR Int. Conf. Mach. Learn., 2023, pp. 19 730–
19 742.

[40] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in Proc. PMLR Int.
Conf. Mach. Learn., 2021, pp. 8748–8763.

[41] J. Li, D. Li, C. Xiong, and S. Hoi, “BLIP: Bootstrapping language-
image pre-training for unified vision-language understanding and
generation,” in Proc. PMLR Int. Conf. Mach. Learn.. PMLR, 2022,
pp. 12 888–12 900.

[42] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[43] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
2012, pp. 5026–5033.

[44] K. Zakka, Y. Tassa, and MuJoCo Menagerie Contributors,
“MuJoCo Menagerie: A collection of high-quality simulation
models for MuJoCo,” 2022. [Online]. Available: http://github.com/
google-deepmind/mujoco_menagerie

[45] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “GPT-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[47] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac Gym:
High performance GPU-based physics simulation for robot learning,”
Advances in Neural Information Processing Systems (NeurIPS), Track
on Datasets and Benchmarks, 2021.

https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v139/radford21a
https://proceedings.mlr.press/v139/radford21a
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://matplotlib.org/
https://ieeexplore.ieee.org/abstract/document/6386109
https://ieeexplore.ieee.org/abstract/document/6386109
http://github.com/google-deepmind/mujoco_menagerie
http://github.com/google-deepmind/mujoco_menagerie
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470


APPENDIX
I. DESCRIPTION GENERATION DETAILS

LLM

{
    "instruction": "There’s a puddle ahead. Avoid it!"
    "reasoning": "steady gait with a moderate speed"
    "gait_phase_offsets": [0.0, 0.5, 0.5, 0.0]
    "T": 0.4
    "vel_lim": 0.6
},
{  
    "instruction": "Sprint as fast as you can!"
    "reasoning": fast gallop with large stride
    "gait_phase_offsets": [0.0, 0.2, 0.7, 0.5],
    "T": 0.2
    "vel_lim": 1.2
},

Walk cautiously on the gravel.
There’s a puddle ahead. Avoid it!
Your paws are dirty, wipe them!
Sprint as fast as you can!
Don't knock over the flowerpot.
Jump over the low obstacle.
There's a ball! Fetch it!
Avoid the sharp objects on the ground
Walk slowly through the mud.

<Prompt>

Generate 100 different description of a 
quadruped robot behavior or scenes it 
might encounter

<Meta-prompt>

<General description>You are a 
reinforcement learning engineer expert....
Your task is to generate gait commands...

Skill databaseInstructions

Instructions generation 

Skill database generation 

Fig. 8. Offline skill database generation pipeline. The LLM firstly gener-
ates instructions, which are categorized into mimicking behaviors, scene
responses, and direct instructions. These instructions are then passed to a
meta-prompt to generate contents for the skill database.

The two-stage description generation as shown in Fig. 8
offers two primary benefits: (1) it mitigates the maximum
token length constraint of the LLM, and (2) it enables the
LLM to generate diverse and structured motion descriptors
by passing the generated instructions to a meta-prompt that
produces the motion descriptors. We used the GPT-4o [45]
model as the LLM.

Rather than generating all three types of instructions in
a single prompt, we observed that the LLM produces more
diverse yet structured instructions when prompted separately
for each category. A crucial key implementation detail was
prompting the LLM to explicitly generate n instructions for
each category instead of generating all instructions simulta-
neously. This categorical prompting approach prevents the
LLM from hallucinating false instructions and ensures that
the generated instructions are relevant to the category. To
comply with the maximum token length constraint of the
LLM, we set n=100 for each generation process.

II. INSTRUCTION PROMPT

The instruction prompt is used to categorically generate
three types of instructions: (1) mimicking behaviors, (2)
scene descriptions, and (3) direct instructions. A template
prompt is used to give general instructions to the LLM about
its basic tasks, as shown in Listing 1.

Afterward, the instructions for each category are generated
by substituting categorical prompts into the template prompt.
We attached each categorical prompts in Listings 2, 3, and 4.

We used the GPT-4o [45] model as the LLM to generate
the instructions. The meta and category prompts are given
to the LLM application programming interface (API) with a
system role, and the number of instructions to generate is
given as a user role. The LLM generates the instructions
in the form of listed texts.

Listing 1: Template prompt for generating short instructions.
<General instructions>
#You are an expert in biomechanics, especially in

quadrupedal biomechanics.

#You are familiar with various gait pattern of a
quadrupedal animal.

#Given an input <N> that indicates the number for
descriptions, you should output <N> different
descriptions

{DESCRIPTION_TYPE}

Listing 2: Categorical prompt for generating instructions to
mimic certain behaviors.
Your task now is to tell a quadrupedal animal about how to

:
- mimic an animal
- sometimes define the appropriate speed: slow, fast,

moderate
- your output should be brief and concise for a short

description

<Input-Output format and examples>
Input: 8
Output:
- let’s hop like a rabbit
- run beautifully as a horse
- trot slowly, resembling a dog
- frogs jump by lifting all its foot!
- show me a hamster
- show me how a dog run quickly
- mimic a cat walk slowly
- do a galloping zebra!

Listing 3: Categorical prompt for generating instructions for
giving directive commands.
Your task now is to tell a quadrupedal animal about how to

:
- do some particular actions, especially related to:

* gait pattern

* foot stepping frequency

* speed

* loudness of the food stepping

* carefulness of the foot stepping

<Input-Output format and examples>
Input: 11
Output:
- trot with high frequency
- pace slowly and quietly
- trot slowly
- bound quickly!
- bound very slowly please
- tell me what a pace looks like
- oh no! catch that thief running!
- stop where you are!
- dance for me!
- reduce your noise
- let’s be loud!

Listing 4: Categorical prompt for generating descriptions of
particular scenes
Your task now is to:
- Decribe a scene that can be encountered in daily lives
- The scene requires the animal gait to be changed, e.g.
1. slowing down in a library
2. careful on ice
3. stopping at dangerous edge
- The description should be diverse but conceise

<Input-Output format and examples>
Input: 8
Output:
- be careful of the slippery tiles
- this is a library
- someone is sleeping. be quiet
- ouch! the floor is too hot!
- carefully approach the stairs
- on no! its a dead end!
- there is a meeting, silent
- the snow is slippery



III. SKILL PROMPT

The skill prompt is used to translate instructions into
motion descriptors. The meta-prompt for the skill prompt is
shown in Listing 5. This prompt tells the LLM to generate
motion descriptors based on the input instructions. Before
generating the motion descriptors, the LLM is first required
to generate a reasoning prompt explaining the rationale
behind the motion descriptors (Section III-B.3). The motion
descriptors are generated in the form of a structured .json
file content.

We also shuffled the input instructions to the LLM to
prevent the model from memorizing the input-output pairs.
This shuffling process is crucial to prevent the LLM from
generating repetitive motion descriptors.

Listing 5: Meta-prompt for generating motion descriptors
given a list of instructions.
<General description>
You are a reinforcement learning engineer expert,

specializing in quadrupedal robots.
Your task it to provide gait style commands of a

quadrupedal robot based on the user input that
describes the robot’s behavior or surroundings.

You are required to ALWAYS give the output in a correct
and standardized form.

<What is gait styles?>
We parameterize gait styles using 2 parameterized values
1. T: float
- T is the gait cycle duration of the robot
- T is proportional to 1/f, where f is the number of foot

contact per 1 s
- 0.2 < T <= 1
- Lower T means more step per second and vice versa
- Higher T is required for longer walking stride similar

to how cheetah runs.

2. gait_phase_offsets: List[float, float, float, float]
- The sequence of the variable in the list is [FL, FR, RL

, RR]
- FL=front left foot
- FR=froont right foot
- RL=rear left foot
- RR=rear right foot
- each offsets ranges between 0 to 1

3. vel_lim: float
- The robot can ideally move up to 1.5m/s
- The robot is small, its body length is around 40cm
- Setting low vel_lim will make the robot move slower
- Setting high vel_lim allows the robot to move faster
- Set vel_lim to 0 to make the robot completely stop

<Some basic gait_phase_offsets dict>
You can use this dict as your reference. But I expect you

to be creative, not confined to this example only.
gait_dict = {

’trot’: [0.0, 0.5, 0.5, 0.0],
’rotary_gallop’: [0.0, 0.2, 0.7, 0.5],
’pace’: [0.0, 0.5, 0.0, 0.5],
’pronk’: [0.0, 0.0, 0.0, 0.0],
’bound’: [0.0, 0.0, 0.5, 0.5],

}
A brief contextual description:
1. Trot is a diagonal foot contact, known to be one of the

stable gait, but not so creative
2. Rotary gallop shows rotary contact for each foot.
3. Pace shows synchronous contacts between each left/right

hemisphere
4. Pronk lifts all feet at the same time and land at the

same time
5. Bound lifts all front or all rear legs at the same time
6. Gallop, pronk, and bound are typically more efficient

with higher T (>0.5) on higher speed because of more
leg flying phase.

<Important things to note>
1. Your output MUST NOT biased or overfit to those in the

gait dict. The gait dict is only an example gaits,
where the controller can perform well. You are free
to create new gait lists and be creative!

2. You can select T between 0 to 1, but in general, 0.3<=T
<=0.6 is preferrable for stability. There could be
cases where you need T>0.6, but it is not desired.

3. NEVER give T<0.2

<Reasoning>
You should output a brief reasoning of the gait that you

recommend.

<Example input-output format>
Input:
-trot slowly
-trot quickly
-pace quickly
-save your energy
-bound like a rabbit
-walk slowly
-you are a frog
-gallop swiftly
-be quiet!
Output:
{

"instruction": "trot slowly",
"reason": "trot with low vel_lim",
"T": 0.6,
"gait_phase_offsets": [0.0, 0.5, 0.5, 0.0],
"vel_lim": 0.4

},
{

"instruction": "trot quickly",
"reason": "trot with high vel_lim",
"T": 0.3,
"gait_phase_offsets": [0.0, 0.5, 0.5, 0.0],
"vel_lim": 1.2

},
{

"instruction": "pace quickly",
"reason": "pace gait, high vel_lim, low T for high
frequency",
"T": 0.35,
"gait_phase_offsets": [0.0, 0.5, 0.0, 0.5],
"vel_lim": 1.0

},
{

"instruction": "save your energy",
"reason": "pace gait energy-efficient, reduce to
moderate vel_lim and T",
"T": 0.4,
"gait_phase_offsets": [0.0, 0.5, 0.0, 0.5],
"vel_lim": 0.5

},
{

"instruction": "bound like a rabbit",
"reason": "bound with moderate vel_lim, increase T for
longer swing",

"T": 0.6,
"gait_phase_offsets": [0.0, 0.0, 0.5, 0.5],
"vel_lim: 1.0

},
{

"instruction": "walk slowly",
"reason": "make a slow gallop gait, reduce vel_limit
and increase T for lower step noise",
"T": 0.6,
"gait_phase_offsets": [0.0, 0.2, 0.7, 0.5],
"vel_lim: 0.3

},
{

"instruction": "you are a frog",
"reason": "frog jump with all legs flying, set
moderate vel_lim, set moderate T for moderate swing
time",
"T": 0.45,
"gait_phase_offsets": [0.0, 0.0, 0.0, 0.0],
"vel_lim": 0.6

},
{



"instruction": "gallop swiftly",
"reason": "make a gallop gait, increase T for flying
phase, increase vel_lim for running",
"T": 0.6,
"gait_phase_offsets": [0.0, 0.2, 0.7, 0.5],
"vel_lim: 1.2

},
{

"instruction": "be quiet!",
"reason": "gallop slowly with high T for lower noise",
"T": 0.65,
"gait_phase_offsets": [0.0, 0.2, 0.7, 0.5],
"vel_lim: 0.25

}

IV. SYSTEM SETUP

A. Locomotion Controller

For all experiments, we utilized the Unitree Go1 robot as
the platform. The locomotion controller was trained using the
proximal policy optimization (PPO) algorithm [46] with an
asymmetric actor-critic implementation and state estimation,
following the methodologies of [7] and [8]. The policy was
trained in a custom implementation of the training envi-
ronment built using the Isaac Gym simulator [47]. Several
physical parameters were randomized to ensure sim-to-real
robustness, including robot mass, center of mass, motor
stiffness, damping, and terrain friction. Additionally, system
delays were randomized to emulate real-world latency.

The locomotion policy was deployed on the Unitree Go1’s
onboard Jetson Xavier NX board. The policy was operated at
50 Hz, sending joint angle commands to the robot’s motor
controllers that convert the commands to motor torques at
200 Hz.

B. VLM Inference

The VLM module, based on a pre-trained BLIP-2 model,
requires a GPU for inference due to the lack of CPU
compatibility for certain built-in functions. For this purpose,
we utilized a separate laptop equipped with an NVIDIA
GeForce RTX 3070 Ti GPU. All input instructions, whether
in text or image format, were transmitted to the VLM
module via a robot operating system (ROS) network. The
retrieved motion descriptor was subsequently sent to the
robot through the same ROS network. We observed no
performance degradation due to network latency, as the VLM
advisor and locomotion controller operate asynchronously.
Furthermore, the data transmission and VLM inference time
were negligible, amounting to less than 100 ms.


	Introduction
	Related Work
	Locomotion Skill Control
	LLM as Robot Policies
	LLM as a Data Generator

	Methodology
	Versatile Quadrupedal Locomotion
	Style-Conditioned Locomotion Policy
	Compliant Contact Tracking

	Scaling Up Motion Description Data
	Instruction Description Generation
	Instruction-Grounded Motion Description
	Prompted Reasoning for Motion Description Generation

	Vision-Language Model as a Motion Advisor
	Mixed-Precision Retrieval
	Text as Image Helps Sentence Understanding


	Experiments
	Gait Tracking Performance
	Motion Description Data Scaling
	Categorical Gait Distribution
	Motion Descriptors Statistics

	Retrieval Performance
	Accuracy
	Interpretation of Queries Out of the Database.
	Interpretation of Robot-Centric Image Queries.

	Zero-Shot Generalization Across Embodiments
	Conclusion
	References

	Appendix
	Description Generation Details
	Instruction Prompt
	Skill Prompt
	System Setup
	Locomotion Controller
	VLM Inference




